

Form: Course Syllabus	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963 05/12/2022
	Number and Date of Revision or Modification	2023/10/15
	Deans Council Approval Decision Number	265/2024/24/3/2
	The Date of the Deans Council Approval Decision	2024/1/23
	Number of Pages	07

1.	Course Title	Environmental Isotopes
2.	Course Number	0305951
3.	Credit Hours (Theory, Practical)	3, theory
	Contact Hours (Theory, Practical)	3, theory
4.	Prerequisites/Corequisites	-
5.	Program Title	PH.D in Geology
6.	Program Code	-
7.	School/ Center	School of Science
8.	Department	Geology
9.	Course Level	PH D program
10.	Year of Study and Semester (s)	-
11.	Other Department(s) Involved in Teaching the Course	-
12.	Main Learning Language	English
13.	Learning Types	<input checked="" type="checkbox"/> Face to face learning <input type="checkbox"/> Blended <input type="checkbox"/> Fully online
14.	Online Platforms(s)	<input checked="" type="checkbox"/> Moodle <input checked="" type="checkbox"/> Microsoft Teams
15.	Issuing Date	25/04/2025
16.	Revision Date	

17. Course Coordinator:

Name:Dr Najel Yaseen Contact hours: -

Office number:Geology 202 Phone number: ext: 22275

Email:nyaseen@ju.edu.jo

18. Other Instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19. Course Description:

This course examines the use of radiogenic and stable isotopes as tracers of biogeochemical processes. Topics in the course include the theoretical basis for radiogenic and stable isotope chemistry, and the application of isotope studies in ecological, hydrological, and geochemical studies. Standards and measurements of stable and radioactive isotopes. Stable isotopes: oxygen, hydrogen, carbon, sulphur, and nitrogen. Radioisotopes: tritium, carbon 14, chlorine, krypton, argon, uranium series. Isotopes as indicators of environmental change.

20. Program Student Outcomes (SO's): (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)

(SO1) Students will be able to design and execute original research, employing advanced methodologies to generate new knowledge in their specialized area of geology

(SO2) Students will display the potential to seriously evaluate complex geological problems, the usage of analytical and problem-fixing capabilities to develop modern answers and interpretations of their studies.

(SO3) Students will benefit know-how in using cutting-edge gear, techniques, and technology applicable to their geological research, applying these abilities to research and cope with complicated geological phenomena.

(SO4) Students will effectively communicate their studies findings via academic guides, presentations, and conferences, making significant contributions to the scientific network and attractive technical and non-technical audiences.

(SO5) Students will showcase a sturdy dedication to ethical studies practices and apprehend the broader societal and environmental affects of their work, promoting sustainability and integrity within the subject.

(SO6) Students will demonstrate a determination to persistent mastering, actively enticing with rising studies, and professional improvement possibilities to maintain and amplify their know-how throughout their careers.

PILO's	*National Qualifications Framework Descriptors*		
	Competency (C)	Skills (B)	Knowledge (A)
1.	X	<input type="checkbox"/>	<input type="checkbox"/>
2.	<input type="checkbox"/>	<input type="checkbox"/>	X
3.	<input type="checkbox"/>	X	<input type="checkbox"/>
4.	<input type="checkbox"/>	X	<input type="checkbox"/>
5.	X		<input type="checkbox"/>
6.	<input type="checkbox"/>	<input type="checkbox"/>	X

21. Course Intended Learning Outcomes (CLO's): (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- CLO1 Explain the theoretical foundations of radiogenic and stable isotope chemistry and their behavior in natural systems.
- CLO2 Apply stable isotope techniques (oxygen, hydrogen, carbon, sulfur, nitrogen) to investigate ecological, hydrological, and geochemical processes.
- CLO3 Utilize radioisotope methods (e.g., tritium, carbon-14, chlorine, krypton, argon, uranium series) to trace environmental changes and groundwater dynamics.
- CLO4 Analyze isotope measurement data and critically assess the accuracy, standards, and limitations of isotopic methods.
- CLO5 Integrate isotopic data from different systems to construct models of biogeochemical cycles and environmental changes.
- CLO6 Communicate complex isotopic research findings effectively through scientific publications, technical reports, and presentations, adhering to ethical research standards.

Course CLOs	The learning levels to be achieved					
	Remembering	Understanding	Applying	Analysing	evaluating	Creating
CLO (1)	✓	✓				
CLO (2)	✓		✓			
CLO (3)	✓		✓			
CLO (4)	✓			✓		
CLO (5)	✓				✓	✓

CLO (6)	✓						✓	✓
---------	---	--	--	--	--	--	---	---

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program SO's Course CLO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	Descriptors		
							A	B	C
CLO (1)		✓					X	□	□
CLO (2)			✓				□	X	□
CLO (3)	✓		✓				□	X	□
CLO (4)		✓		✓			□	X	□
CLO (5)	✓					✓	□	□	X
CLO (6)				✓	✓		□	□	X

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types (Face to Face/Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
1		General introduction						
2	2	Introduction to Environmental Isotope Geochemistry Fundamentals of Stable and Radiogenic Isotope Systems	1	Face to Face			Exams + assignment s	Suggested readings + papers
3	2	Standards, Calibration, and Measurement Techniques Instrumentation: Mass Spectrometry and Radiometric Methods	4	Face to Face			Exams + assignment s	Suggested readings + papers

4	2	Stable Isotopes of Oxygen and Hydrogen in the Water Cycle Applications: Hydrology, Climate Reconstructions	2	Face to Face			Exams + assignment s	Suggested readings + papers
5	2	Stable Isotopes of Carbon and Sulfur in Ecosystems Isotope Applications in Biogeochemical Cycles	2, 5	Face to Face			Exams + assignment s	Suggested readings + papers
6	2	Stable Isotopes of Nitrogen in Environmental Studies Case Study 1: Tracing Pollution Sources Using Stable Isotopes	3	Face to Face			Exams + assignment s	Suggested readings + papers
7	2	Radiogenic Isotopes: Tritium and Carbon-14 Dating Radiogenic Isotopes: Chlorine, Krypton, Argon Applications	3	Face to Face			Exams + assignment s	Suggested readings + papers
8	2	Case Study 2: Groundwater Residence Time Using Tritium and C-14		Face to Face			Exams + assignment s	Suggested readings + papers
Midterm Exam								
9	2	Uranium Series Isotopes: Processes and Environmental Applications Radioisotopes as Indicators of Environmental Changes	4	Face to Face				
10	2	Quantitative Interpretation of Isotope Data Sources of Error and Uncertainty in Isotopic Analyses	4	Face to Face			Exams + assignment s	Suggested readings + papers
11	2	Case Study 3: Stable Isotope Signals in Climate Change Research Ethics in Isotope Research and Environmental Studies	5, 6	Face to Face			Exams + assignment s	Suggested readings + papers

12	2	Case Study 3: Stable Isotope Signals in Climate Change Research Ethics in Isotope Research and Environmental Studies	5, 6	Face to Face			Exams + assignment s	Suggested readings + papers
13	2	Student Presentations on Selected Case Studies	6	Face to Face			Exams + assignment s	Suggested readings + papers
14	2	Final EXAM		Face to Face			Exams + assignment s	Suggested readings + papers

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
Midterm Exam	30	TBD	1,2,3	End of eighth week	
Home Assignments	10	TBD	1,2,3,4,5,6	Each two weeks	
Project and presentation	20	TBD	1,2,3,4,5,6	Term-long project due at the end of the semester	
Final Exam	40	TBD	3,4,5,6	End of semester	

25. Course Requirements:

students should have a computer, internet connection, account on a specific software/platform...(elearning)

26. Course Policies:

- A- Attendance policies: following the school regulations.
- B- Absences from exams and submitting assignments on time: following the school regulations.
- C- Health and safety procedures: following the school regulations.
- D- Honesty policy regarding cheating, plagiarism, misbehavior: following the school regulations.
- E- Grading policy: following the school regulations.
- F- Available university services that support achievement in the course: NA.

27. References:

A- Required book(s), assigned reading and audio-visuals:

1. **Clark, I. D., & Fritz, P. (1997). *Environmental isotopes in hydrogeology*.** Lewis Publishers
2. **Chyi, L. L., & Morrison, J. (2022). *Environmental isotopes for hydrology and environmental science: Principles and applications* (2nd ed.). CRC Press.**

B- Recommended books, materials, and media:

3. **Kendall, C., & McDonnell, J. J. (Eds.). (1998). *Isotope tracers in catchment hydrology*.** Elsevier.
4. **Faure, G., & Mensing, T. M. (2005). *Isotopes: Principles and applications* (3rd ed.). Wiley.**
5. **Hoefs, J. (2018). *Stable isotope geochemistry* (8th ed.). Springer.**

28. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Dr. Najel Yaseen		25/04/2025
Name of the Head of Quality Assurance Committee/ Department	Signature:	Date:
Dr Bety Saqarat		
Name of the Head of Department	Signature:	Date:
Prof. Emad A. Abuosba		
Name of the Head of Quality Assurance Committee/ School of Science	Signature:	Date:
Prof. Mahmoud I. Jaghoub		
Name of the Dean or the Director	Signature:	Date: